3.390 \(\int \frac{x^2}{\left (a+b x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx\)

Optimal. Leaf size=77 \[ \frac{2}{3 \sqrt{c+d x^3} (b c-a d)}-\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 (b c-a d)^{3/2}} \]

[Out]

2/(3*(b*c - a*d)*Sqrt[c + d*x^3]) - (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])
/Sqrt[b*c - a*d]])/(3*(b*c - a*d)^(3/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.178045, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167 \[ \frac{2}{3 \sqrt{c+d x^3} (b c-a d)}-\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 (b c-a d)^{3/2}} \]

Antiderivative was successfully verified.

[In]  Int[x^2/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

2/(3*(b*c - a*d)*Sqrt[c + d*x^3]) - (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])
/Sqrt[b*c - a*d]])/(3*(b*c - a*d)^(3/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 20.3179, size = 66, normalized size = 0.86 \[ - \frac{2 \sqrt{b} \operatorname{atan}{\left (\frac{\sqrt{b} \sqrt{c + d x^{3}}}{\sqrt{a d - b c}} \right )}}{3 \left (a d - b c\right )^{\frac{3}{2}}} - \frac{2}{3 \sqrt{c + d x^{3}} \left (a d - b c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2/(b*x**3+a)/(d*x**3+c)**(3/2),x)

[Out]

-2*sqrt(b)*atan(sqrt(b)*sqrt(c + d*x**3)/sqrt(a*d - b*c))/(3*(a*d - b*c)**(3/2))
 - 2/(3*sqrt(c + d*x**3)*(a*d - b*c))

_______________________________________________________________________________________

Mathematica [A]  time = 0.118141, size = 76, normalized size = 0.99 \[ \frac{2}{3} \left (\frac{1}{\sqrt{c+d x^3} (b c-a d)}-\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{3/2}}\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[x^2/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(2*(1/((b*c - a*d)*Sqrt[c + d*x^3]) - (Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])
/Sqrt[b*c - a*d]])/(b*c - a*d)^(3/2)))/3

_______________________________________________________________________________________

Maple [C]  time = 0.011, size = 463, normalized size = 6. \[ -{\frac{2}{3\,ad-3\,bc}{\frac{1}{\sqrt{ \left ({x}^{3}+{\frac{c}{d}} \right ) d}}}}-{\frac{{\frac{i}{3}}b\sqrt{2}}{{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ \left ( -ad+bc \right ) \left ( ad-bc \right ) }\sqrt [3]{-c{d}^{2}}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-c{d}^{2}}} \right ) \left ( -3\,\sqrt [3]{-c{d}^{2}}+i\sqrt{3}\sqrt [3]{-c{d}^{2}} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-c{d}^{2}}+\sqrt [3]{-c{d}^{2}} \right ) } \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}} \left ( i\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,\sqrt{3}d+2\,{{\it \_alpha}}^{2}{d}^{2}-i\sqrt{3} \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}-\sqrt [3]{-c{d}^{2}}{\it \_alpha}\,d- \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-c{d}^{2}}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ){\frac{1}{\sqrt [3]{-c{d}^{2}}}}}}},{\frac{b}{2\, \left ( ad-bc \right ) d} \left ( 2\,i{{\it \_alpha}}^{2}\sqrt [3]{-c{d}^{2}}\sqrt{3}d-i{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{{\frac{2}{3}}}\sqrt{3}+i\sqrt{3}cd-3\,{\it \_alpha}\, \left ( -c{d}^{2} \right ) ^{2/3}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}} \left ( -{\frac{3}{2\,d}\sqrt [3]{-c{d}^{2}}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-c{d}^{2}}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2/(b*x^3+a)/(d*x^3+c)^(3/2),x)

[Out]

-2/3/(a*d-b*c)/((x^3+c/d)*d)^(1/2)-1/3*I/d^2*b*2^(1/2)*sum(1/(-a*d+b*c)/(a*d-b*c
)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(
-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*
d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))
/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d+2*_alp
ha^2*d^2-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*Ellipt
icPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1
/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*_alpha^2*(-c*d^2)^(1/3)*3^(1/2)*d-I*_al
pha*(-c*d^2)^(2/3)*3^(1/2)+I*3^(1/2)*c*d-3*_alpha*(-c*d^2)^(2/3)-3*c*d)/(a*d-b*c
),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1
/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)*(d*x^3 + c)^(3/2)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.232035, size = 1, normalized size = 0.01 \[ \left [-\frac{\sqrt{d x^{3} + c} \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b d x^{3} + 2 \, b c - a d + 2 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{\frac{b}{b c - a d}}}{b x^{3} + a}\right ) - 2}{3 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )}}, -\frac{2 \,{\left (\sqrt{d x^{3} + c} \sqrt{-\frac{b}{b c - a d}} \arctan \left (-\frac{{\left (b c - a d\right )} \sqrt{-\frac{b}{b c - a d}}}{\sqrt{d x^{3} + c} b}\right ) - 1\right )}}{3 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)*(d*x^3 + c)^(3/2)),x, algorithm="fricas")

[Out]

[-1/3*(sqrt(d*x^3 + c)*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d
*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) - 2)/(sqrt(d*x^3 + c)*(b
*c - a*d)), -2/3*(sqrt(d*x^3 + c)*sqrt(-b/(b*c - a*d))*arctan(-(b*c - a*d)*sqrt(
-b/(b*c - a*d))/(sqrt(d*x^3 + c)*b)) - 1)/(sqrt(d*x^3 + c)*(b*c - a*d))]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2}}{\left (a + b x^{3}\right ) \left (c + d x^{3}\right )^{\frac{3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2/(b*x**3+a)/(d*x**3+c)**(3/2),x)

[Out]

Integral(x**2/((a + b*x**3)*(c + d*x**3)**(3/2)), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.21638, size = 99, normalized size = 1.29 \[ \frac{2 \, b \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{3 \, \sqrt{-b^{2} c + a b d}{\left (b c - a d\right )}} + \frac{2}{3 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/((b*x^3 + a)*(d*x^3 + c)^(3/2)),x, algorithm="giac")

[Out]

2/3*b*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c
- a*d)) + 2/3/(sqrt(d*x^3 + c)*(b*c - a*d))